Optimización e Interpretabilidad de Modelos Clasificadores para Alzheimer: Un Estudio Basado en el Conjunto de Datos OASIS-2
DOI:
https://doi.org/10.47756/aihc.y10i1.191Palabras clave:
Alzheimer, Aplicaciones Médicas, Aprendizaje AutomáticoResumen
El diagnóstico temprano de la enfermedad de Alzheimer es crucial para ralentizar su progresión y mejorar la calidad de vida de los pacientes. Este estudio evalúa el desempeño de tres modelos de aprendizaje automático —regresión logística, máquina de vectores de soporte y bosque aleatorio— utilizando el conjunto de datos OASIS-2 en dos condiciones: considerando únicamente la primera visita de cada participante (150 casos) e incluyendo todas las mediciones longitudinales disponibles (373 casos). Se aplicó un flujo de preprocesamiento estandarizado, validación cruzada y búsqueda en cuadrícula para optimizar los modelos. Los modelos entrenados con el conjunto de datos ampliado alcanzaron una precisión del 96%, superando los resultados previamente reportados. Se implementaron técnicas de explicabilidad, incluyendo agrupamiento K-Means y explicaciones locales agnósticas al modelo, para analizar las instancias mal clasificadas, revelando que varios errores se debieron a pacientes “converted” mal etiquetados y no a deficiencias de los modelos. Estos hallazgos evidencian que el desempeño de clasificación es altamente sensible a la calidad y consistencia del etiquetado de los datos. Los resultados subrayan la necesidad de procedimientos rigurosos de recolección y curación de datos para garantizar la equidad y aplicabilidad clínica de los modelos predictivos. Futuros trabajos deben enfocarse en construir conjuntos de datos longitudinales más representativos y explorar técnicas adicionales de explicabilidad para reducir sesgos potenciales y fortalecer la confiabilidad de los sistemas de diagnóstico temprano.
Descargas
Citas
Swanberg, M. M., Tractenberg, R. E., Mohs, R., Thal, L. J. and Cummings, J. L. “Executive Dysfunction in Alzheimer Disease”, Arch Neurol, vol. 61, núm. 4, p. 556, abr. 2004, doi: 10.1001/archneur.61.4.556. DOI: https://doi.org/10.1001/archneur.61.4.556
Frias, C. E., Cabrera, E. and Zabalegui, A. “Informal Caregivers’ Roles in Dementia: The Impact on Their Quality of Life”, Life, vol. 10, núm. 11, p. 251, oct. 2020, doi: 10.3390/life10110251. DOI: https://doi.org/10.3390/life10110251
Goren, A., Montgomery, W., Kahle-Wrobleski, K., Nakamura, T. and Ueda, K. “Impact of caring for persons with Alzheimer’s disease or dementia on caregivers’ health outcomes: findings from a community based survey in Japan”, BMC Geriatr, vol. 16, núm. 1, p. 122, dic. 2016, doi: 10.1186/s12877-016-0298-y. DOI: https://doi.org/10.1186/s12877-016-0298-y
Fathi, S., Ahmadi, M. and Dehnad, A. “Early diagnosis of Alzheimer’s disease based on deep learning: A systematic review”, Computers in Biology and Medicine, vol. 146, p. 105634, jul. 2022, doi: 10.1016/j.compbiomed.2022.105634. DOI: https://doi.org/10.1016/j.compbiomed.2022.105634
Tan, W. Y., Hargreaves, C., Chen, C. and Hilal, S. “A Machine Learning Approach for Early Diagnosis of Cognitive Impairment Using Population-Based Data”, JAD, vol. 91, núm. 1, pp. 449–461, ene. 2023, doi: 10.3233/JAD-220776. DOI: https://doi.org/10.3233/JAD-220776
Diogo, V. S., Ferreira, H. A., Prata, D. and for the Alzheimer’s Disease Neuroimaging Initiative, “Early diagnosis of Alzheimer’s disease using machine learning: a multi-diagnostic, generalizable approach”, Alz Res Therapy, vol. 14, núm. 1, p. 107, dic. 2022, doi: 10.1186/s13195-022-01047-y. DOI: https://doi.org/10.1186/s13195-022-01047-y
Ferrara, E. “The Butterfly Effect in artificial intelligence systems: Implications for AI bias and fairness”, Machine Learning with Applications, vol. 15, p. 100525, mar. 2024, doi: 10.1016/j.mlwa.2024.100525. DOI: https://doi.org/10.1016/j.mlwa.2024.100525
Khan A. and Zubair, S. “Longitudinal Magnetic Resonance Imaging as a Potential Correlate in the Diagnosis of Alzheimer Disease: Exploratory Data Analysis”, JMIR Biomed Eng, vol. 5, núm. 1, p. e14389, abr. 2020, doi: 10.2196/14389. DOI: https://doi.org/10.2196/14389
Cockrell, J. R. and Folstein, M. F. “Mini-Mental State Examination (MMSE)”, Psychopharmacol Bull, vol. 24, núm. 4, pp. 689–692, 1988.
Morris, J. C. et al., “Clinical Dementia Rating training and reliability in multicenter studies: The Alzheimer’s Disease Cooperative Study experience”, Neurology, vol. 48, núm. 6, pp. 1508–1510, jun. 1997, doi: 10.1212/WNL.48.6.1508. DOI: https://doi.org/10.1212/WNL.48.6.1508
Marcus, D. S., Fotenos, A. F., Csernansky, J. G., Morris, J. C., and Buckner, R. L. “Open Access Series of Imaging Studies: Longitudinal MRI Data in Nondemented and Demented Older Adults”, Journal of Cognitive Neuroscience, vol. 22, núm. 12, pp. 2677–2684, dic. 2010, doi: 10.1162/jocn.2009.21407. DOI: https://doi.org/10.1162/jocn.2009.21407
Choraś, M., Pawlicki, M., Puchalski, D. and Kozik, R. “Machine Learning – The Results Are Not the only Thing that Matters! What About Security, Explainability and Fairness?”, en Computational Science – ICCS 2020, vol. 12140, V. V. Krzhizhanovskaya, G. Závodszky, M. H. Lees, J. J. Dongarra, P. M. A. Sloot, S. Brissos, y J. Teixeira, Eds., en Lecture Notes in Computer Science, vol. 12140., Cham: Springer International Publishing, 2020, pp. 615–628. doi: 10.1007/978-3-030-50423-6_46. DOI: https://doi.org/10.1007/978-3-030-50423-6_46
Cutillo, C. M. et al., “Machine intelligence in healthcare—perspectives on trustworthiness, explainability, usability, and transparency”, npj Digit. Med., vol. 3, núm. 1, p. 47, mar. 2020, doi: 10.1038/s41746-020-0254-2. DOI: https://doi.org/10.1038/s41746-020-0254-2
Dosilovic, F. K., Brcic, M. and Hlupic, N. “Explainable artificial intelligence: A survey”, en 2018 41st International Convention on Information and Communication Technology, Electronics and Microelectronics (MIPRO), Opatija: IEEE, may 2018, pp. 0210–0215. doi: 10.23919/MIPRO.2018.8400040. DOI: https://doi.org/10.23919/MIPRO.2018.8400040
Barocas, S. and Selbst, A.D. “Big Data's Disparate Impact”, 2016, doi: 10.15779/Z38BG31. DOI: https://doi.org/10.2139/ssrn.2477899
Battineni, G., Chintalapudi, N. and Amenta, F. “Machine learning in medicine: Performance calculation of dementia prediction by support vector machines (SVM)”, Informatics in Medicine Unlocked, vol. 16, p. 100200, 2019, doi: 10.1016/j.imu.2019.100200. DOI: https://doi.org/10.1016/j.imu.2019.100200
Sørensen, L. and Nielsen, M. “Ensemble support vector machine classification of dementia using structural MRI and mini-mental state examination”, Journal of Neuroscience Methods, vol. 302, pp. 66–74, may 2018, doi: 10.1016/j.jneumeth.2018.01.003. DOI: https://doi.org/10.1016/j.jneumeth.2018.01.003
Bari Antor, M. et al., “A Comparative Analysis of Machine Learning Algorithms to Predict Alzheimer’s Disease”, Journal of Healthcare Engineering, vol. 2021, pp. 1–12, jul. 2021, doi: 10.1155/2021/9917919. DOI: https://doi.org/10.1155/2021/9917919
Khan A. and Zubair, S. “An Improved Multi-Modal based Machine Learning Approach for the Prognosis of Alzheimer’s disease”, Journal of King Saud University - Computer and Information Sciences, vol. 34, núm. 6, pp. 2688–2706, jun. 2022, doi: 10.1016/j.jksuci.2020.04.004. DOI: https://doi.org/10.1016/j.jksuci.2020.04.004
Morales‐Forero, A., Rueda Jaime, L., Gil‐Quiñones, S.R., Barrera Montañez, M.Y., Bassetto, S. and Coatanea, E. “An insight into racial bias in dermoscopy repositories: A HAM10000 data set analysis”, JEADV Clinical Practice, vol. 3, núm. 3, pp. 836–843, jul. 2024, doi: 10.1002/jvc2.477. DOI: https://doi.org/10.1002/jvc2.477
Obermeyer, Z., Powers, B., Vogeli, C. and Mullainathan, S. “Dissecting racial bias in an algorithm used to manage the health of populations”, Science, vol. 366, núm. 6464, pp. 447–453, oct. 2019, doi: 10.1126/science.aax2342. DOI: https://doi.org/10.1126/science.aax2342
Vellido, A. “The importance of interpretability and visualization in machine learning for applications in medicine and health care”, Neural Comput & Applic, vol. 32, núm. 24, pp. 18069–18083, dic. 2020, doi: 10.1007/s00521-019-04051-w. DOI: https://doi.org/10.1007/s00521-019-04051-w
Hassan, S. U., Abdulkadir, S. J., Zahid, M. S. M. and Al-Selwi, S. M. “Local interpretable model-agnostic explanation approach for medical imaging analysis: A systematic literature review”, Computers in Biology and Medicine, vol. 185, p. 109569, feb. 2025, doi: 10.1016/j.compbiomed.2024.109569. DOI: https://doi.org/10.1016/j.compbiomed.2024.109569
Shaikh, A. S., Samant, R. M., Patil, K. S., Patil, N. R. and Mirkale, A. R. “Review on Explainable AI by using LIME and SHAP Models for Healthcare Domain”, IJCA, vol. 185, núm. 45, pp. 18–23, nov. 2023, doi: 10.5120/ijca2023923263. DOI: https://doi.org/10.5120/ijca2023923263
Magesh, P. R., Myloth, R. D. and Tom, R. J. “An Explainable Machine Learning Model for Early Detection of Parkinson’s Disease using LIME on DaTSCAN Imagery”, Computers in Biology and Medicine, vol. 126, p. 104041, nov. 2020, doi: 10.1016/j.compbiomed.2020.104041. DOI: https://doi.org/10.1016/j.compbiomed.2020.104041
Falvo F. R. and Cannataro, M. “Explainability techniques for Artificial Intelligence models in medical diagnostic”, en 2024 IEEE International Conference on Bioinformatics and Biomedicine (BIBM), Lisbon, Portugal: IEEE, dic. 2024, pp. 6907–6913. doi: 10.1109/BIBM62325.2024.10821826. DOI: https://doi.org/10.1109/BIBM62325.2024.10821826
Guzmán Ponce, A., López-Bautista, J. and Fernandez-Beltran, R. “Interpretando Modelos de IA en Cáncer de Mama con SHAP y LIME”, IRCI, vol. 2, núm. 2, p. 15, jul. 2024, doi: 10.36677/ideaseningenieria.v2i2.23952. DOI: https://doi.org/10.36677/ideaseningenieria.v2i2.23952
Varghese, A., Sherimon, V., Raja, X. C., Ephrem, B. G. and Gouda, P. “Neural Imaging for Alzheimer’s Prediction using AI: Exploring CNNs and LIME Explanations”, Alzheimer’s & Dementia, vol. 20, núm. S4, p. e088802, dic. 2024, doi: 10.1002/alz.088802. DOI: https://doi.org/10.1002/alz.088802
Kamal, Md. S., Northcote, A., Chowdhury, L., Dey, N., Crespo, R.G. and Herrera-Viedma, E. “Alzheimer’s Patient Analysis Using Image and Gene Expression Data and Explainable-AI to Present Associated Genes”, IEEE Trans. Instrum. Meas., vol. 70, pp. 1–7, 2021, doi: 10.1109/TIM.2021.3107056. DOI: https://doi.org/10.1109/TIM.2021.3107056
Soladoye, A.A., Aderinto, N., Osho, D. and Olawade, D.B. Explainable machine learning models for early Alzheimer’s disease detection using multimodal clinical data”, International Journal of Medical Informatics, vol. 204, p. 106093, ago. 2025, doi: 10.1016/j.ijmedinf.2025.106093. DOI: https://doi.org/10.1016/j.ijmedinf.2025.106093
Loveleen, G., Mohan, B., Shikhar, B. S., Nz, J., Shorfuzzaman, M. and Masud, M. “Explanation-Driven HCI Model to Examine the Mini-Mental State for Alzheimer’s Disease”, ACM Trans. Multimedia Comput. Commun. Appl., vol. 20, núm. 2, pp. 1–16, feb. 2024, doi: 10.1145/3527174. DOI: https://doi.org/10.1145/3527174
Eckhardt, C.M. et al., “Unsupervised machine learning methods and emerging applications in healthcare”, Knee surg. sports traumatol. arthrosc., vol. 31, núm. 2, pp. 376–381, feb. 2023, doi: 10.1007/s00167-022-07233-7. DOI: https://doi.org/10.1007/s00167-022-07233-7
Ripan, R. C., Sarker, I. H., Hasan Furhad, Md., Musfique Anwar, M. and Hoque, M. M. “An Effective Heart Disease Prediction Model Based on Machine Learning Techniques”, en Hybrid Intelligent Systems, A. Abraham, T. Hanne, O. Castillo, N. Gandhi, T. Nogueira Rios, y T.-P. Hong, Eds., en Advances in Intelligent Systems and Computing, vol. 1375. Cham: Springer International Publishing, 2021, pp. 280–288. doi: https://doi.org/10.1007/978-3-030-73050-5_28. DOI: https://doi.org/10.1007/978-3-030-73050-5_28
Nedyalkova, M., Madurga, S. and Simeonov, V. “Combinatorial K-Means Clustering as a Machine Learning Tool Applied to Diabetes Mellitus Type 2”, IJERPH, vol. 18, núm. 4, p. 1919, feb. 2021, doi: 10.3390/ijerph18041919. DOI: https://doi.org/10.3390/ijerph18041919
Descargas
Publicado
Cómo citar
Número
Sección
Licencia
Derechos de autor 2025 Heber Zapata , Olanda Prieto-Ordaz, Raymundo Cornejo

Esta obra está bajo una licencia internacional Creative Commons Atribución-NoComercial-SinDerivadas 4.0.
AMexIHC hace todo el esfuerzo para asegurar la precisi´n y rigurosidad de la informaci´ón (el "Contenido") contenida en nuestras publicaciones. Sin embargo, AMexIHC y nuestros representantes no representan o garantizan de ninguna manera la precisi´ón, completitud o pertinencia de el Contenido para ning´ún propósito. Cualquier opinión y punto de vista expresados en esta publicación son las opiniones y puntos de vista de los autores, y no son de ninguna manera los puntos de vista o con anuencia de AMexIHC. La precisi´ón de el Contenido no debería ser confiada en su totalidad y debería ser corroborada con las fuentes primarias de informaci´ón.