AI Assistants in the Workplace: Goal-Oriented Recommendations Using LLM
DOI:
https://doi.org/10.47756/aihc.y9i1.140Palabras clave:
LLM, Artificial Intelligence, Machine Learning, AI Assistant, Workplace, RecommendationsResumen
Self-quantifying technology enables users to evaluate their performance and define strategies for improvement. Workplace technology assists users in identifying activities and patterns that facilitate task completion. Software that measures workplace signals requires access to information from the user interface and peripherals. Current software solutions that track computer activity lack goal orientation and do not share raw data that could aid users and researchers in analyzing behavioral patterns at work. This paper presents Wellbot, an intelligent AI assistant capable of tracking workers' activities and providing personalized insights. The solution employs machine learning models to detect goal-oriented and recreational time. Based on users' goals and recent activities, Wellbot generates recommendations aided by Large Language Models. This work aims to enable tools that assist workers through an improved understanding of their context and goals.
Descargas
Citas
MS Windows NT Kernel Description. https://docs.agpt.co/. Accessed: 2010-09-30.Anderson, R.E. Social impacts of computing:
Codes of professional ethics. Social Science Computing Review 10, 2 (1992), 453-469. DOI: https://doi.org/10.1177/089443939201000402
Ami Doshi, Ria Shah, Drasti Bhimani, Bhoomi Patel, and Swati Mali. 2017. Donna-A web based AI Personal Assistant. International Journal of DOI: https://doi.org/10.5120/ijca2017915610
Anton N Dragunov, Thomas G Dietterich, Kevin Johnsrude, Matthew McLaughlin, Lida Li, and Jonathan L Herlocker. 2005. TaskTracer: a desktop
Dragunov, Anton N., Thomas G. Dietterich, Kevin Johnsrude, Matthew McLaughlin, Lida Li, and Jonathan L. Herlocker. "TaskTracer: a desktop environment to support multi-tasking knowledge workers." In Proceedings of the 10th international conference on Intelligent user interfaces, pp. 75-82. 2005. DOI: https://doi.org/10.1145/1040830.1040855
Yolanda Gil, Varun Ratnakar, Timothy Chklovski, Paul Groth, and Denny Vrandecic. 2012. Capturing common knowledge about tasks: Intelligent
Gil, Yolanda, Varun Ratnakar, Timothy Chklovski, Paul Groth, and Denny Vrandecic. "Capturing common knowledge about tasks: Intelligent assistance for to-do lists." ACM Transactions on Interactive Intelligent Systems (TiiS) 2, no. 3 (2012): 1-35. DOI: https://doi.org/10.1145/2362394.2362397
Manuela Pollak and Gabriele Anderst-Kotsis. 2017. E-mail monitoring and management with MS social bots. In Proceedings of the 19th International. DOI: https://doi.org/10.1145/3151759.3151799
Zellweger, P.T., Bouvin, N.O., Jehøj, H., and Mackinlay, J.D. Fluid Annotations in an Open World. Proc. Hypertext 2001, ACM Press (2001), 9-18. DOI: https://doi.org/10.1145/504216.504224
Descargas
Publicado
Cómo citar
Número
Sección
Licencia

Esta obra está bajo una licencia internacional Creative Commons Atribución-NoComercial-SinDerivadas 4.0.
AMexIHC hace todo el esfuerzo para asegurar la precisi´n y rigurosidad de la informaci´ón (el "Contenido") contenida en nuestras publicaciones. Sin embargo, AMexIHC y nuestros representantes no representan o garantizan de ninguna manera la precisi´ón, completitud o pertinencia de el Contenido para ning´ún propósito. Cualquier opinión y punto de vista expresados en esta publicación son las opiniones y puntos de vista de los autores, y no son de ninguna manera los puntos de vista o con anuencia de AMexIHC. La precisi´ón de el Contenido no debería ser confiada en su totalidad y debería ser corroborada con las fuentes primarias de informaci´ón.