Promoting Women's Participation in STEM through a Digital Tool Based on Large Language Models (LLM)

Authors

  • Ariana Guadalupe Espinoza Salinas Centro de Investigación Científica y de Educación Superior de Ensenada

DOI:

https://doi.org/10.47756/aihc.y9i1.183

Keywords:

STEM, Women, Large Language Model, Gender Bias, Vocational Guidance Agent, Growth Mindset Supportive Language

Abstract

Despite the growing demand for STEM education (Science, Technology, Engineering, and Mathematics), a gender gap persists, influenced by stereotypes, lack of confidence in mathematical abilities, and inadequate vocational guidance. Practical strategies to increase women's participation in STEM include technological interventions. A vocational guidance agent based on Large Language Models (LLMs), specifically designed for women can enhance STEM education by providing personalized learning and targeted guidance, thus fostering greater female participation in these fields.

However, LLMs may perpetuate biases due to their training on human-generated texts. To address this issue, we propose the design of a digital tool based on LLMs, exploring personalization techniques and improvements in these systems. The agent is envisioned to incorporate Growth Mindset Supportive Language (GMSL) to foster a growth mindset, challenge gender stereotypes, and support women's STEM identity.

Downloads

Download data is not yet available.

References

Graciela Rojas Montemayor, Laura Segura Guzmán, & Gina Andrade Baena. (2023). Informe sobre la brecha de género en STEM en México. Movimiento STEM+, OIT, y UNICEF. Recuperado de

https://www.unicef.org/mexico/informes/informe-sobre-la-brecha-de-g%C3%A9nero-en-stem-en-la-formaci%C3%B3n-t%C3%A9cnico-profesional-en-m%C3%A9xico.

Darraz, M. C. F., Guerrero, G. M., & Pincheira, D. A. Transformar las desigualdades educativas: El rol del género en la orientación vocacional. Recuperado de

https://ediciones.uct.cl/content/uploads/2023/12/Ge%CC%81nero-y-educacio%CC%81n-EDICIONES-UCT.pdf#page=32.

Microsoft. (2018). Closing the STEM gap: Why STEM classes and careers still lack girls and what we can do about it. Microsoft Corporation. Recuperado de

https://query.prod.cms.rt.microsoft.com/cms/api/am/binary/RE1UMWz.

Prieto-Rodriguez, E., Sincock, K., & Blackmore, K. (2020). STEM initiatives matter: Results from a systematic review of secondary school interventions for girls. International Journal of Science Education, 42(7), 1144-1161. DOI: https://doi.org/10.1080/09500693.2020.1749909

Dominguez, A., Meléndez-Anzures, F., Tejeda, S., Zavala, G., Verdugo-Castro, S., García-Holgado, A., & Sanjakdar, F. Use of technology to empower and connect women in STEM. Recuperado de

https://www.researchgate.net/profile/Angeles-Dominguez/publication/379111668_Use_of_technology_to_empower_and_connect_women_in_STEM/links/65fb19eba8baf573a1c7a971/Use-of-technology-to-empower-and-connect-women-in-STEM.pdf.

Stoeger, H., Debatin, T., Heilemann, M., & Ziegler, A. (2019). Online mentoring for talented girls in STEM: The role of relationship quality and changes in learning environments in explaining mentoring success. New Directions for Child and Adolescent Development, 2019(168), 75-99. DOI: https://doi.org/10.1002/cad.20320

Demszky, D., Yang, D., Yeager, D. S., Bryan, C. J., Clapper, M., Chandhok, S., ... & Pennebaker, J. W. (2023). Using large language models in psychology. Nature Reviews Psychology, 2(11), 688-701 DOI: https://doi.org/10.1038/s44159-023-00241-5

Ovadia, O., Brief, M., Mishaeli, M., & Elisha, O. (2023). Fine-tuning or retrieval? comparing knowledge injection in llms. arXiv preprint arXiv:2312.05934. DOI: https://doi.org/10.18653/v1/2024.emnlp-main.15

Oymak, S., Rawat, A.S., Soltanolkotabi, M. & Thrampoulidis, C.. (2023). On the Role of Attention in Prompt-tuning. Proceedings of the 40th International Conference on Machine Learning, in Proceedings of Machine Learning Research 202:26724-26768. Recuperado de https://proceedings.mlr.press/v202/oymak23a.html.

Vijay Kumar, A. B. (2024). Multi-Agent systems are LLM applications that are changing the automation landscape with intelligent bots. Medium. Recuperado de https://abvijaykumar.medium.com/multi-agent-architectures-e09c53c7fe0d.

Huang, J., Li, K., & Yehdego, D. (2024). Evaluating Large Language Model (LLM) systems: Metrics, challenges, and best practices. Data Science at Microsoft. Recuperado de

https://medium.com/data-science-at-microsoft/evaluating-llm-systems-metrics-challenges-and-best-practices-664ac25be7e5.

Handa, K., Clapper, M., Boyle, J., Wang, R. E., Yang, D., Yeager, D. S., & Demszky, D. (2023). " Mistakes Help Us Grow": Facilitating and Evaluating Growth Mindset Supportive Language in Classrooms. arXiv preprint arXiv:2310.10637. DOI: https://doi.org/10.18653/v1/2023.emnlp-main.549

Published

2024-11-30

How to Cite

[1]
Espinoza Salinas, A.G. 2024. Promoting Women’s Participation in STEM through a Digital Tool Based on Large Language Models (LLM). Avances en Interacción Humano-Computadora. 9, 1 (Nov. 2024), 268–271. DOI:https://doi.org/10.47756/aihc.y9i1.183.

Issue

Section

Graduate thesis reports

Similar Articles

1 2 3 4 5 > >> 

You may also start an advanced similarity search for this article.