Integration of IoT and Data Visualization for Personalized Diabetes Management

A Technological Approach to Chronic Disease Care

Authors

  • Emilio-Antonio Alarcón-Santos Universidad Veracruzana
  • Luis G. Montané-Jiménez Universidad Veracruzana
  • José-Guillermo Hernández-Calderón Universidad Veracruzana

DOI:

https://doi.org/10.47756/aihc.y9i1.178

Keywords:

Data visualization, Diabetes, Chronic diseases, Medical devices, Biomarkers, Patient monitoring

Abstract

This paper presents a framework for developing diabetes management systems, emphasizing the importance of data collection, storage, analysis, and visualization. It discusses two main methods of data entry: manual and automated, each with its advantages and disadvantages. Data visualization is highlighted as a crucial component, enabling users to interpret their health information clearly and understandably, using graphs and tables that facilitate the identification of trends and patterns. Additionally, the document addresses security and privacy challenges in data storage, both locally and in the cloud. Data analysis allows for generating personalized recommendations that help patients manage their condition more effectively. Overall, the document underscores the need for intuitive and accessible interfaces that enhance user experience and promote proactive diabetes management.

Downloads

Download data is not yet available.

References

A. R. Kalia, A. Pavshe, D. Shah, and S. Pansambal, “Data visualization and pre-processing techniques-based diabetes prediction system,” in 2021 Second International Conference on Electronics and Sustainable Communication Systems (ICESC), 2021, pp. 1638–1645. DOI: https://doi.org/10.1109/ICESC51422.2021.9532964

International Diabetes Federation, IDF Diabetes Atlas, 10th edn., Brussels, Belgium, 2021.

J. C. Wong, A. B. Neinstein, H. Look, B. Arbiter, N. Chokr, C. Ross, and S. Adi, “Pilot study of a novel application for data visualization in type 1 diabetes,” Journal of Diabetes Science and Technology, vol. 11, no. 4, pp. 800–807, 2017, pMID: 28617628. DOI: https://doi.org/10.1177/1932296817691305

J. Koponen, Data visualization handbook, 1st ed., ser. Aalto University Publication Series. Art, Design and Architecture ; 1. Espoo: Aalto Arts Books, 2019. DOI: https://doi.org/10.21926/rpm.1902001

Nightscout. (2024). Nightscout documentation. https://nightscout.github.io/

R. Arriaga, EAI for Innovation. A, and Association for Computing Machinery, “Proceedings of the 14th eai inter national conference on pervasive computing technologies for healthcare: Pervasivehealth 2020,” 2020, 6-8 October 2020.

Y. Zhang, K. Chanana, and C. Dunne, “Idmvis: Temporal event sequence visualization for type 1 diabetes treatment decision support,” IEEE Transactions on Visualization and Computer Graphics, vol. 25, no. 1, pp. 512–522, 2018. DOI: https://doi.org/10.1109/TVCG.2018.2865076

Published

2024-11-30

How to Cite

[1]
Alarcón-Santos, E.-A. et al. 2024. Integration of IoT and Data Visualization for Personalized Diabetes Management: A Technological Approach to Chronic Disease Care. Avances en Interacción Humano-Computadora. 9, 1 (Nov. 2024), 249–252. DOI:https://doi.org/10.47756/aihc.y9i1.178.

Issue

Section

Work in Progress

Similar Articles

1 2 3 4 5 > >> 

You may also start an advanced similarity search for this article.