Privacy-Aware Artificial Intelligence: A Review of Design Principles and Applications
DOI:
https://doi.org/10.47756/aihc.y9i1.169Keywords:
Data-Protection aware AI, Artificial Intelligence, Personal Data Protection, Ethical Principles in AI, Artificial Intelligence RegulationAbstract
Artificial intelligence has emerged as a transformative tool in managing personal data, presenting unprecedented opportunities and significant challenges. This review provides an overview of AI's ethical, technological, and legal dimensions in the context of personal data protection. A systematic literature review was conducted to identify key themes and gaps in these areas. Ethically, the findings highlight the importance of transparency, accountability, and privacy as guiding principles for the responsible use of AI. Technologically, advancements in AI offer innovative solutions for safeguarding data; however, challenges persist in ensuring their interoperability and adaptability across various applications. Legally, regulatory frameworks such as the General Data Protection Regulation (GDPR) and Mexico's General Law on Personal Data Protection Held by Obligated Subjects (LGPDPPSO) illustrate progress in safeguarding personal data. Yet, gaps in enforcement mechanisms and inconsistencies across jurisdictions highlight the need for further refinement. This review underscores the necessity of interdisciplinary collaboration to navigate the complexities of AI and personal data protection. By integrating ethical, technological, and legal perspectives, this study aims to contribute to developing AI systems that respect privacy and remarks on the importance of personal data protection-aware artificial intelligence applications while adapting to diverse regulatory environments.
Downloads
References
Albornoz, M. M. (2021). El titular de datos personales, parte débil en tiempos de auge de la Inteligencia Artificial. ¿Cómo fortalecer su posición? Revista IUS, 15(48). https://doi.org/10.35487/rius.v15i48.2021.715 DOI: https://doi.org/10.35487/rius.v15i48.2021.715
Alexin, Z. (2017). Hungary’s unorthodox approach to personal privacy. Health and Technology, 7(4), 423–440. https://doi.org/10.1007/s12553-017-0181-7 DOI: https://doi.org/10.1007/s12553-017-0181-7
Amaral, O., Abualhaija, S., Torre, D., Sabetzadeh, M., & Briand, L. C. (2021). AI-enabled automation for completeness checking of privacy policies. https://doi.org/10.48550/ARXIV.2106.05688 DOI: https://doi.org/10.1109/TSE.2021.3124332
Asghar, M. N., Kanwal, N., Lee, B., Fleury, M., Herbst, M., & Qiao, Y. (2019). Visual surveillance within the EU general data protection regulation: A technology perspective. IEEE Access: Practical Innovations, Open Solutions, 7, 111709–111726. https://doi.org/10.1109/access.2019.2934226 DOI: https://doi.org/10.1109/ACCESS.2019.2934226
Ayling, J., & Chapman, A. (2022). Putting AI ethics to work: are the tools fit for purpose? AI and Ethics, 2(3), 405–429. https://doi.org/10.1007/s43681-021-00084-x DOI: https://doi.org/10.1007/s43681-021-00084-x
Azam, N., Michala, L., Ansari, S., & Truong, N. B. (2023). Data privacy threat modelling for autonomous systems: A survey from the GDPR’s perspective. IEEE Transactions on Big Data, 9(2), 388–414. https://doi.org/10.1109/tbdata.2022.3227336 DOI: https://doi.org/10.1109/TBDATA.2022.3227336
Binjubeir, M., Ahmed, A. A., Ismail, M. A. B., Sadiq, A. S., & Khurram Khan, M. (2020). Comprehensive survey on big data privacy protection. IEEE Access: Practical Innovations, Open Solutions, 8, 20067–20079. https://doi.org/10.1109/access.2019.2962368 DOI: https://doi.org/10.1109/ACCESS.2019.2962368
Boden, M. (2017). Inteligencia Artificial. Turner publicaciones.
Bu, Q. (2021). The global governance on automated facial recognition (AFR): ethical and legal opportunities and privacy challenges. International Cybersecurity Law Review, 2(1), 113–145. https://doi.org/10.1365/s43439-021-00022-x DOI: https://doi.org/10.1365/s43439-021-00022-x
Capdeferro, O. (2020). La inteligencia artificial del sector público: desarrollo y regulación de la actuación administrativa inteligente en la cuarta revolución industrial. IDP Revista de Internet Derecho y Política, 30. https://doi.org/10.7238/idp.v0i30.3219 DOI: https://doi.org/10.7238/idp.v0i30.3219
Casanovas, P., De Koker, L., Mendelson, D., & Watts, D. (2017). Regulation of Big Data: Perspectives on strategy, policy, law and privacy. Health and Technology, 7(4), 335–349. https://doi.org/10.1007/s12553-017-0190-6 DOI: https://doi.org/10.1007/s12553-017-0190-6
Castellanos Claramunt, J. (2020). La gestión de la información en el paradigma algorítmico: inteligencia artificial y protección de datos. Métodos de Informacion, 11(21), 059–082. https://doi.org/10.5557/iimei11-n21-059082 DOI: https://doi.org/10.5557/IIMEI11-N21-059082
Ceross, A., & Simpson, A. (2018). Rethinking the proposition of privacy engineering. Proceedings of the New Security Paradigms Workshop. DOI: https://doi.org/10.1145/3285002.3285006
de Laat, P. B. (2021). Companies committed to responsible AI: From principles towards implementation and regulation? Philosophy & Technology, 34(4), 1135–1193. https://doi.org/10.1007/s13347-021-00474-3 DOI: https://doi.org/10.1007/s13347-021-00474-3
Enríquez, O. A. M. (2021). El derecho de protección de datos personales en los sistemas de inteligencia artificial. Revista IUS, 15(48). https://doi.org/10.35487/rius.v15i48.2021.743
Fernández-Aller, C., & Serrano Pérez, M. M. (2022). ¿Es posible una Inteligencia artificial respetuosa con la protección de datos? Doxa, 45, 307. https://doi.org/10.14198/doxa2022.45.11 DOI: https://doi.org/10.14198/DOXA2022.45.11
Gill, K. S. (2020). Ethics of engagement. AI & Society, 35(4), 783–793. https://doi.org/10.1007/s00146-020-01079-8 DOI: https://doi.org/10.1007/s00146-020-01079-8
Ibarra Cadena Blanca Lilia, Acuña Llamas Francisco Javier, Alcalá MéndezAdrián, Del Río Venegas Norma Julieta, & Román Vergara Josefina. (2022). Recomendaciones para el tratamiento de datos personales derivado del uso de la inteligencia artificial.
Ishii, K. (2019). Comparative legal study on privacy and personal data protection for robots equipped with artificial intelligence: looking at functional and technological aspects. AI & Society, 34(3), 509–533. https://doi.org/10.1007/s00146-017-0758-8 DOI: https://doi.org/10.1007/s00146-017-0758-8
Lorè, F., Basile, P., Appice, A., de Gemmis, M., Malerba, D., & Semeraro, G. (2023). An AI framework to support decisions on GDPR compliance. Journal of Intelligent Information Systems, 61(2), 541–568. https://doi.org/10.1007/s10844-023-00782-4 DOI: https://doi.org/10.1007/s10844-023-00782-4
Martínez Devia, A. (2019). La inteligencia artificial, el big data y la era digital: ¿una amenaza para los datos personales? Revista La Propiedad Inmaterial, 27, 5–23. https://doi.org/10.18601/16571959.n27.01 DOI: https://doi.org/10.18601/16571959.n27.01
Mendoza, O. (2022). El derecho de protección de datos personales en los sistemas de inteligencia artificial. 15(48), 179–207. https://doi.org/10.35487/rius.v15i48.2021.743 DOI: https://doi.org/10.35487/rius.v15i48.2021.743
Minkkinen, M., Laine, J., & Mäntymäki, M. (2022). Continuous auditing of artificial intelligence: A conceptualization and assessment of tools and frameworks. Digital Society: Ethics, Socio-Legal and Governance of Digital Technology, 1(3). https://doi.org/10.1007/s44206-022-00022-2 DOI: https://doi.org/10.1007/s44206-022-00022-2
Mitropoulos, D., Sotiropoulos, T., Koutsovasilis, N., & Spinellis, D. (2020). PDGuard: an architecture for the control and secure processing of personal data. International Journal of Information Security, 19(4), 479–498. https://doi.org/10.1007/s10207-019-00468-5 DOI: https://doi.org/10.1007/s10207-019-00468-5
Olca, E., & Can, O. (2022). DICON: A domain-independent consent management for personal data protection. IEEE Access: Practical Innovations, Open Solutions, 10, 95479–95497. https://doi.org/10.1109/access.2022.3204970 DOI: https://doi.org/10.1109/ACCESS.2022.3204970
Page, M. J., McKenzie, J. E., Bossuyt, P. M., Boutron, I., Hoffmann, T. C., Mulrow, C. D., Shamseer, L., Tetzlaff, J. M., Akl, E. A., Brennan, S. E., Chou, R., Glanville, J., Grimshaw, J. M., Hróbjartsson, A., Lalu, M. M., Li, T., Loder, E. W., Mayo-Wilson, E., McDonald, S., … Moher, D. (2021). The PRISMA 2020 statement: an updated guideline for reporting systematic reviews. BMJ (Clinical Research Ed.), n71. https://doi.org/10.1136/bmj.n71 DOI: https://doi.org/10.1136/bmj.n71
Román, J. (2022). La Inteligencia Artificial y la Protección de Datos Personales. 3, 39-41.
Ruschemeier, H. (2023). AI as a challenge for legal regulation – the scope of application of the artificial intelligence act proposal. ERA Forum, 23(3), 361–376. https://doi.org/10.1007/s12027-022-00725-6 DOI: https://doi.org/10.1007/s12027-022-00725-6
Simbeck, K. (2022). FAccT-check on AI regulation: Systematic evaluation of AI regulation on the example of the legislation on the use of AI in the public sector in the German federal state of Schleswig-Holstein. 2022 ACM Conference on Fairness, Accountability, and Transparency. DOI: https://doi.org/10.1145/3531146.3533076
Smuha, N. A. (2021). From a ‘race to AI’ to a ‘race to AI regulation’: regulatory competition for artificial intelligence. Law, Innovation and Technology, 13(1), 57–84. https://doi.org/10.1080/17579961.2021.1898300 DOI: https://doi.org/10.1080/17579961.2021.1898300
Tikk, E. (2017). Privacy online: up, close and personal. Health and Technology, 7(4), 489–499. https://doi.org/10.1007/s12553-017-0197-z DOI: https://doi.org/10.1007/s12553-017-0197-z
Timmers, P. (2019). Ethics of AI and Cybersecurity When Sovereignty is at Stake. Minds and Machines, 29(4), 635–645. https://doi.org/10.1007/s11023-019-09508-4 DOI: https://doi.org/10.1007/s11023-019-09508-4
Urrútia, G., & Bonfill, X. (2010). Declaración PRISMA: una propuesta para mejorar la publicación de revisiones sistemáticas y metaanálisis. Medicina clinica, 135(11), 507–511. https://doi.org/10.1016/j.medcli.2010.01.015 van DOI: https://doi.org/10.1016/j.medcli.2010.01.015
Ooijen, I., & Vrabec, H. U. (2019). Does the GDPR enhance consumers’ control over personal data? An analysis from a behavioural perspective. Journal of Consumer Policy, 42(1), 91–107. https://doi.org/10.1007/s10603-018-9399-7 DOI: https://doi.org/10.1007/s10603-018-9399-7
Downloads
Published
How to Cite
Issue
Section
License

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.
AMexIHC make every effort to ensure the accuracy and rigour of all the information (the "Content") contained in out publications. However, AMexIHC and our representatives make no representations or warranties whatsoever as to the accuracy, completeness, or suitability for any purpose of the Content. Any opinions and views expressed in this publication are the opinions and views of the authors, and are not the views of or endorsed by AMexIHC. The accuracy of the Content should not be relied upon and should be independently verified with primary sources of information.