Design guides for the development of a system to create interpretations of breast cancer studies
DOI:
https://doi.org/10.47756/aihc.y9i1.163Keywords:
Breast cancer, design guides, case study, computational systemsAbstract
Breast cancer is a disease that, in the last years, has increased considerably worldwide. From a medical point of view, there exists a well-defined classification that radiologists use to interpret mammograms. New computational tools could be created with the purpose of helping the radiologists, to achieve this it is necessary to transform such medical knowledge into computational knowledge. This way, these computational tools could be used to help making decisions and accelerate the interpretations that radiologists perform. This research work presents design guides, which should be considered for the creation of computational systems. These guides are based on the knowledge that has been gathered from a breast cancer project in a hospital at the city of San Luis Potosi.
Downloads
References
World Health Organization, “WHO Breast Cancer.” Accessed: May 14, 2024. [Online]. Available: https://www.who.int/news-room/fact-sheets/detail/breast-cancer
ACR, “ACR BI-RADS® Atlas Fifth Edition QUICK REFERENCE.” Accessed: May 16, 2024. [Online]. Available: https://www.acr.org/-/media/ACR/Files/RADS/BI-RADS/BIRADS-Reference-Card.pdf
S. Balasubramaniam, Y. Velmurugan, D. Jaganathan, and S. Dhanasekaran, “A Modified LeNet CNN for Breast Cancer Diagnosis in Ultrasound Images,” Diagnostics, vol. 13, no. 17, pp. 1–28, 2023, doi: 10.3390/diagnostics13172746. DOI: https://doi.org/10.3390/diagnostics13172746
T. R. Mahesh et al., “Transformative Breast Cancer Diagnosis using CNNs with Optimized ReduceLROnPlateau and Early Stopping Enhancements,” Int. J. Comput. Intell. Syst., vol. 17, no. 1, 2024, doi: 10.1007/s44196-023-00397-1. DOI: https://doi.org/10.1007/s44196-023-00397-1
D. M. Ikeda and K. K. Miyake, Breast Imaging: The Requisites, 3rd Editio. Elsevier, 2017.
P. Shi, J. Zhong, A. Rampun, and H. Wang, “A hierarchical pipeline for breast boundary segmentation and calcification detection in mammograms,” Comput. Biol. Med., vol. 96, no. October 2017, pp. 178–188, 2018, doi: 10.1016/j.compbiomed.2018.03.011. DOI: https://doi.org/10.1016/j.compbiomed.2018.03.011
K. Loizidou, G. Skouroumouni, C. Nikolaou, and C. Pitris, “An Automated Breast Micro-Calcification Detection and Classification Technique Using Temporal Subtraction of Mammograms,” IEEE Access, vol. 8, pp. 52785–52795, 2020, doi: 10.1109/ACCESS.2020.2980616. DOI: https://doi.org/10.1109/ACCESS.2020.2980616
“Understanding Breast Calcifications.” Accessed: May 20, 2024. [Online]. Available: https://www.breastcancer.org/screening-testing/mammograms/what-mammograms-show/calcifications
A. Strauss and J. Corbin, Basics of Qualitative Research: Techniques and procedures for developing grounded theory. Thousand Oaks, CA, 1998.
S. S. A. y P. Gobierno de México, “Convenios Específicos del Programa de Fortalecimiento a la Atención Médica 2019 (antes Unidades Médicas Móviles).” Accessed: Aug. 16, 2024. [Online]. Available: https://www.gob.mx/salud/acciones-y-programas/convenios-especificos-del-programa-de-fortalecimiento-a-la-atencion-medica-2019-antes-unidades-medicas-moviles
Francisco E. Martínez-Perez et al., “Using reference points for detection of calcifications in mammograms for medical active systems,” in Proceedings of the 15th International Conference on Ubiquitous Computing & Ambient Intelligence (UCAmI 2023), Springer, Cham, 2023, pp. 39--50. doi: https://doi.org/10.1007/978-3-031-48306-6_4. DOI: https://doi.org/10.1007/978-3-031-48306-6_4
I. C. Moreira, I. Amaral, I. Domingues, A. Cardoso, M. J. Cardoso, and J. S. Cardoso, “INbreast: Toward a Full-field Digital Mammographic Database.,” Acad. Radiol., vol. 19, no. 2, pp. 236–248, 2012, doi: 10.1016/j.acra.2011.09.014. DOI: https://doi.org/10.1016/j.acra.2011.09.014
M. Heath, K. Bowyer, D. Kopans, R. Moore, and P. Kegelmeyer Jr, “The digital database for screening mammography,” in Proceedings of the Fourth International Workshop on Digital Mammography, 2000. doi: 10.1007/978-94-011-5318-8_75. DOI: https://doi.org/10.1007/978-94-011-5318-8_75
Ceta-ciemat, “BCDR.” Accessed: Jul. 11, 2023. [Online]. Available: https://www.ciemat.es/cargarAplicacionNoticias.do;jsessionid=70C792CCF8908DF0D7289D48D83DC7CB?identificador=391
I. Suckling, J.; Parker, J.; Dance, D.; Astley, S.; Hutt, I.; Boggis, C.; Ricketts, “Mammographic Image Analysis Society (MIAS) Database v1.21 [Dataset];,” Dataset; Digital Mammogram Database Exerpta Medica: Dordrecht, The Netherland. [Online]. Available: https://www.repository.cam.ac.uk/handle/1810/250394
M. Torres Tabanera, “Novedades de la 5.a edición del sistema breast imaging reporting and data system (BI-RADS®) del Colegio Americano de Radiología,” Rev. Senol. y Patol. Mamar., vol. 29, no. 1, pp. 32–39, 2016. DOI: https://doi.org/10.1016/j.senol.2015.12.001
L. Tejerizo-López et al., “Asimetría mamaria (anisomastia),” Clin. Invest. Ginecol. Obstet., vol. 27, no. 1, 1999, [Online]. Available: https://www.elsevier.es/es-revista-clinica-e-investigacion-ginecologia-obstetricia-7-articulo-asimetria-mamaria-anisomastia--8197
A. G. V. Bitencourt et al., “Intramammary lymph nodes: Normal and abnormal multimodality imaging features,” Br. J. Radiol., vol. 92, no. 1103, 2019, doi: 10.1259/bjr.20190517. DOI: https://doi.org/10.1259/bjr.20190517
V. J. Ayres, L. C. Ramalho, S. C. L. Wludarski, and E. de F. C. Fleury, “Screening a solitary dilated duct in the breast: A pictorial essay,” Breast Cancer Targets Ther., vol. 13, pp. 505–512, 2021, doi: 10.2147/BCTT.S307842. DOI: https://doi.org/10.2147/BCTT.S307842
B. Panigrahi et al., “Solitary Dilated Ducts Revisited: Malignancy Rate and Implications for Management,” Acad. Radiol., vol. 30, no. 5, pp. 807–813, 2023, doi: https://doi.org/10.1016/j.acra.2022.08.018. DOI: https://doi.org/10.1016/j.acra.2022.08.018
G. A. Martínez-Chávez, “Equipo Médico para Clínicas de Mama una Mirada Desde la Práctica de la Ingeniería Clínica,” Rev. Mex. Ing. Biomédica, vol. 40, no. 3, pp. 1–8, 2019.
D. and C. in M. Imaging, “DICOM.” Accessed: Aug. 17, 2024. [Online]. Available: https://www.dicomstandard.org/current
B. V. K. Vijaya Kumar, A. Mahalanobis, and R. Juday, Correlation Pattern Recognition. Cambridge University Press Cambridge,, England, 2005.
C. Crespo G, “Un método basado en inteligencia artificial detecta el cáncer del futuro,” National Geographic.
Downloads
Published
How to Cite
Issue
Section
License

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.
AMexIHC make every effort to ensure the accuracy and rigour of all the information (the "Content") contained in out publications. However, AMexIHC and our representatives make no representations or warranties whatsoever as to the accuracy, completeness, or suitability for any purpose of the Content. Any opinions and views expressed in this publication are the opinions and views of the authors, and are not the views of or endorsed by AMexIHC. The accuracy of the Content should not be relied upon and should be independently verified with primary sources of information.