Design guides for the development of a system to create interpretations of breast cancer studies

Authors

  • Francisco Eduardo Martínez-Pérez Universidad Autónoma de San Luis Potosí
  • Rosario Margot Camargo-Zebadúa Hospital Central “Dr. Ignacio Morones Prieto”
  • Sandra Edith Nava-Muñoz Universidad Autónoma de San Luis Potosí
  • Alberto Salvador Núñez-Varela Universidad Autónoma de San Luis Potosí
  • Abel de Jesús Guerrero-Jaime Hospital Central “Dr. Ignacio Morones Prieto”
  • José Ignacio Núñez-Varela Universidad Autónoma de San Luis Potosí
  • Francisco Edgar Castillo-Barrera Universidad Autónoma de San Luis Potosí
  • César A. Ramírez-Gámez Universidad Autónoma de San Luis Potosí

DOI:

https://doi.org/10.47756/aihc.y9i1.163

Keywords:

Breast cancer, design guides, case study, computational systems

Abstract

Breast cancer is a disease that, in the last years, has increased considerably worldwide. From a medical point of view, there exists a well-defined classification that radiologists use to interpret mammograms. New computational tools could be created with the purpose of helping the radiologists, to achieve this it is necessary to transform such medical knowledge into computational knowledge. This way, these computational tools could be used to help making decisions and accelerate the interpretations that radiologists perform. This research work presents design guides, which should be considered for the creation of computational systems. These guides are based on the knowledge that has been gathered from a breast cancer project in a hospital at the city of San Luis Potosi.

Downloads

Download data is not yet available.

References

World Health Organization, “WHO Breast Cancer.” Accessed: May 14, 2024. [Online]. Available: https://www.who.int/news-room/fact-sheets/detail/breast-cancer

ACR, “ACR BI-RADS® Atlas Fifth Edition QUICK REFERENCE.” Accessed: May 16, 2024. [Online]. Available: https://www.acr.org/-/media/ACR/Files/RADS/BI-RADS/BIRADS-Reference-Card.pdf

S. Balasubramaniam, Y. Velmurugan, D. Jaganathan, and S. Dhanasekaran, “A Modified LeNet CNN for Breast Cancer Diagnosis in Ultrasound Images,” Diagnostics, vol. 13, no. 17, pp. 1–28, 2023, doi: 10.3390/diagnostics13172746. DOI: https://doi.org/10.3390/diagnostics13172746

T. R. Mahesh et al., “Transformative Breast Cancer Diagnosis using CNNs with Optimized ReduceLROnPlateau and Early Stopping Enhancements,” Int. J. Comput. Intell. Syst., vol. 17, no. 1, 2024, doi: 10.1007/s44196-023-00397-1. DOI: https://doi.org/10.1007/s44196-023-00397-1

D. M. Ikeda and K. K. Miyake, Breast Imaging: The Requisites, 3rd Editio. Elsevier, 2017.

P. Shi, J. Zhong, A. Rampun, and H. Wang, “A hierarchical pipeline for breast boundary segmentation and calcification detection in mammograms,” Comput. Biol. Med., vol. 96, no. October 2017, pp. 178–188, 2018, doi: 10.1016/j.compbiomed.2018.03.011. DOI: https://doi.org/10.1016/j.compbiomed.2018.03.011

K. Loizidou, G. Skouroumouni, C. Nikolaou, and C. Pitris, “An Automated Breast Micro-Calcification Detection and Classification Technique Using Temporal Subtraction of Mammograms,” IEEE Access, vol. 8, pp. 52785–52795, 2020, doi: 10.1109/ACCESS.2020.2980616. DOI: https://doi.org/10.1109/ACCESS.2020.2980616

“Understanding Breast Calcifications.” Accessed: May 20, 2024. [Online]. Available: https://www.breastcancer.org/screening-testing/mammograms/what-mammograms-show/calcifications

A. Strauss and J. Corbin, Basics of Qualitative Research: Techniques and procedures for developing grounded theory. Thousand Oaks, CA, 1998.

S. S. A. y P. Gobierno de México, “Convenios Específicos del Programa de Fortalecimiento a la Atención Médica 2019 (antes Unidades Médicas Móviles).” Accessed: Aug. 16, 2024. [Online]. Available: https://www.gob.mx/salud/acciones-y-programas/convenios-especificos-del-programa-de-fortalecimiento-a-la-atencion-medica-2019-antes-unidades-medicas-moviles

Francisco E. Martínez-Perez et al., “Using reference points for detection of calcifications in mammograms for medical active systems,” in Proceedings of the 15th International Conference on Ubiquitous Computing & Ambient Intelligence (UCAmI 2023), Springer, Cham, 2023, pp. 39--50. doi: https://doi.org/10.1007/978-3-031-48306-6_4. DOI: https://doi.org/10.1007/978-3-031-48306-6_4

I. C. Moreira, I. Amaral, I. Domingues, A. Cardoso, M. J. Cardoso, and J. S. Cardoso, “INbreast: Toward a Full-field Digital Mammographic Database.,” Acad. Radiol., vol. 19, no. 2, pp. 236–248, 2012, doi: 10.1016/j.acra.2011.09.014. DOI: https://doi.org/10.1016/j.acra.2011.09.014

M. Heath, K. Bowyer, D. Kopans, R. Moore, and P. Kegelmeyer Jr, “The digital database for screening mammography,” in Proceedings of the Fourth International Workshop on Digital Mammography, 2000. doi: 10.1007/978-94-011-5318-8_75. DOI: https://doi.org/10.1007/978-94-011-5318-8_75

Ceta-ciemat, “BCDR.” Accessed: Jul. 11, 2023. [Online]. Available: https://www.ciemat.es/cargarAplicacionNoticias.do;jsessionid=70C792CCF8908DF0D7289D48D83DC7CB?identificador=391

I. Suckling, J.; Parker, J.; Dance, D.; Astley, S.; Hutt, I.; Boggis, C.; Ricketts, “Mammographic Image Analysis Society (MIAS) Database v1.21 [Dataset];,” Dataset; Digital Mammogram Database Exerpta Medica: Dordrecht, The Netherland. [Online]. Available: https://www.repository.cam.ac.uk/handle/1810/250394

M. Torres Tabanera, “Novedades de la 5.a edición del sistema breast imaging reporting and data system (BI-RADS®) del Colegio Americano de Radiología,” Rev. Senol. y Patol. Mamar., vol. 29, no. 1, pp. 32–39, 2016. DOI: https://doi.org/10.1016/j.senol.2015.12.001

L. Tejerizo-López et al., “Asimetría mamaria (anisomastia),” Clin. Invest. Ginecol. Obstet., vol. 27, no. 1, 1999, [Online]. Available: https://www.elsevier.es/es-revista-clinica-e-investigacion-ginecologia-obstetricia-7-articulo-asimetria-mamaria-anisomastia--8197

A. G. V. Bitencourt et al., “Intramammary lymph nodes: Normal and abnormal multimodality imaging features,” Br. J. Radiol., vol. 92, no. 1103, 2019, doi: 10.1259/bjr.20190517. DOI: https://doi.org/10.1259/bjr.20190517

V. J. Ayres, L. C. Ramalho, S. C. L. Wludarski, and E. de F. C. Fleury, “Screening a solitary dilated duct in the breast: A pictorial essay,” Breast Cancer Targets Ther., vol. 13, pp. 505–512, 2021, doi: 10.2147/BCTT.S307842. DOI: https://doi.org/10.2147/BCTT.S307842

B. Panigrahi et al., “Solitary Dilated Ducts Revisited: Malignancy Rate and Implications for Management,” Acad. Radiol., vol. 30, no. 5, pp. 807–813, 2023, doi: https://doi.org/10.1016/j.acra.2022.08.018. DOI: https://doi.org/10.1016/j.acra.2022.08.018

G. A. Martínez-Chávez, “Equipo Médico para Clínicas de Mama una Mirada Desde la Práctica de la Ingeniería Clínica,” Rev. Mex. Ing. Biomédica, vol. 40, no. 3, pp. 1–8, 2019.

D. and C. in M. Imaging, “DICOM.” Accessed: Aug. 17, 2024. [Online]. Available: https://www.dicomstandard.org/current

B. V. K. Vijaya Kumar, A. Mahalanobis, and R. Juday, Correlation Pattern Recognition. Cambridge University Press Cambridge,, England, 2005.

C. Crespo G, “Un método basado en inteligencia artificial detecta el cáncer del futuro,” National Geographic.

Published

2024-11-30

How to Cite

[1]
Martínez-Pérez, F.E. et al. 2024. Design guides for the development of a system to create interpretations of breast cancer studies. Avances en Interacción Humano-Computadora. 9, 1 (Nov. 2024), 173–178. DOI:https://doi.org/10.47756/aihc.y9i1.163.

Issue

Section

Work in Progress

Similar Articles

1 2 3 4 5 6 7 8 9 > >> 

You may also start an advanced similarity search for this article.