LesionFinder
Development of Pigmented Skin Lesions Segmentation System using thresholds and Morphological Operations
DOI:
https://doi.org/10.47756/aihc.y9i1.166Keywords:
Segmentation, benign nevi, melanomas, image processing techniquesAbstract
The project aims to develop a mole and melanoma detection system using Matlab, evaluating segmentation techniques to identify skin lesions. The system focuses on simple and explainable techniques that require low computational resources, such as thresholding and morphological segmentation, to be useful both in clinical practice and in the education of biomedical engineering students. Computational algorithms and image processing techniques can detect abnormalities, including skin lesions. Research in computational methods to analyze skin abnormalities is growing, but current diagnostic accuracy remains insufficient. The methodology includes needs assessment, architecture design, software development, testing and validation. Images from the HAM10000 dataset were used for testing, and the system was validated using metrics such as sensitivity, specificity, and precision, comparing the results with the ImageJ software. The system showed high precision in detecting benign nevi but difficulties with melanomas, suggesting that morphological techniques are insufficient for clinical detection.
Downloads
References
Arenas R. La piel. Capítulo 1. Serrano H. Dermatología: Atlas, diagnóstico y tratamiento (Séptima Edición). México: Mc Graw Hill; 2019. Páginas 1-4.
Actinic keratosis (A precancerous condition). Johns Hopkins Medicine. Homepage, https://www.hopkinsmedicine.org/health/conditions-and- diseases/actinic-keratosis, last accessed 2024/07/06.
Keratosis pilaris - Symptoms and causes - Mayo Clinic. Homepage, https://www.mayoclinic.org/diseases-conditions/keratosis-pilaris/symptoms- causes/syc-20351149, last accessed 2024/02/17.
Buendía A, Mazuecos J, Camacho F. Anatomía y fisiología de la piel. Conejo-Mir J, Camacho F. Manual de Dermatología (Segunda Edición). Páginas 2-27. Homepage, https://www.berri.es/pdf/MANUAL%20DE%20DERMATOLOGIA%E2%80%9 A%202%20Vols.%20(Tapa%20Dura)/9788478856282
Thawabteh, A. M., Jibreen, A., Karaman, D., Thawabteh, A., & Karaman, R. (2023). Skin Pigmentation Types, Causes and Treatment—A Review. Molecules/Molecules Online/Molecules Annual, 28(12), 4839. https://doi.org/10.3390/molecules28124839 DOI: https://doi.org/10.3390/molecules28124839
American Cancer Society. Cáncer de piel: Lunares comunes, nevos displásicos y el riesgo de melanoma Homepage, https://www.cancer.gov/espanol/tipos/piel/hoja-informativa-lunares, last accessed 2024/02/25.
Aris M. Origen del melanocito normal y maligno. Acta bioquím. clín. Latinoam. 2009; volumen (43): n3. Homepage, http://www.scielo.org.ar/scielo.php?script=sci_arttext&pid=S0325- 29572009000300007, last accessed 2024/02/25.
American Cancer Society. Todo sobre el cáncer: ¿Qué es el cáncer de piel tipo melanoma? Homepage, https://www.cancer.org/es/cancer/tipos/cancer-de-piel- tipo-melanoma/acerca/que-es-melanoma.html, last accessed 2024/02/25.
American Cancer Society. Diccionario de cáncer del NCI: Niveles de Clark Homepage, https://www.cancer.gov/espanol/publicaciones/diccionarios/diccionario- cancer/def/niveles-de-clark, last accessed 2024/02/25.
IDERMA, La importancia de la prevención Homepage, https://www.iderma.es/es/blog.cfm/ID/14383/ESP/la-importancia-prevencion-y- deteccion-precoz-cancer-piel.htm, last accessed 2024/07/01.
American Academy of Dermatology. Find skin cancer: how to perform a skin self- exam Homepage, https://www.aad.org/public/diseases/skin-cancer/find/check- skin, last accessed 2024/07/20.
Skin Cancer Foundation. Early Detection: Overview Homepage, https://www.skincancer.org/early-detection/, last accessed 2024/07/20.
Meyer-Baese A, Schmid V. Chapter 1 - Introduction. Pattern Recognition and Signal Analysis in Medical Imaging (Second Edition). Elsevier Inc. 2014, Pages 1- 20 DOI: https://doi.org/10.1016/B978-0-12-409545-8.00001-7
Instituto de Medicina. Dermatología: ¿QUÉ ES LA DERMATOSCOPIA DIGITAL? Homepage, https://www.egr.es/que-es-la-dermatoscopia-digital/, last accessed 2024/07/06.
Nazari S, Garcia R. Automatic Skin Cancer Detection Using Clinical Images: A Comprehensive Review. Life (Basel). 2023 Oct 26;13(11):2123. doi: 10.3390/life13112123. PMID: 38004263; PMCID: PMC10672549. DOI: https://doi.org/10.3390/life13112123
Martínez Martínez, Á. (2014). Clasificación de imágenes dermatoscopias [Trabajo de Fin de Grado, Universidad Politécnica de Madrid]. Archivo Digital UPM. https://oa.upm.es/33039/1/TFG_alvaro_martinez_martinez.pdf
Haggenmüller S, et al. Skin cancer classification via convolutional neural networks: systematic review of studies involving human experts. Eur J Cancer. 2021 Oct; 156:202-216. doi: 10.1016/j.ejca.2021.06.049. Epub 2021 Sep 8. PMID: 34509059. DOI: https://doi.org/10.1016/j.ejca.2021.06.049
Esteva, A., Kuprel, B., Novoa, R. A., Ko, J., Swetter, S. M., Blau, H. M., & Thrun, S. (2017). Dermatologist-level classification of skin cancer with deep neuralnetworks. Nature, 542(7639), 115–118. https://doi.org/10.1038/nature21056 DOI: https://doi.org/10.1038/nature21056
Liu S, Chen Z, Zhou H, He K, Duan M, Zheng Q, Xiong P, Huang L, Yu Q, Su G, Zhou F. DiaMole: Mole Detection and Segmentation Software for Mobile Phone Skin Images. J Healthc Eng. 2021 Jun 2;2021:6698176. doi: 10.1155/2021/6698176. PMID: 34188791; PMCID: PMC8195635. DOI: https://doi.org/10.1155/2021/6698176
Dermalogica. Face mapping explained | Dermalogica®. Homepage, www.dermalogica.com/blogs/living-skin/face-mapping-skin-analysis, last accessed 2024/07/06.
Olveres, J., et al. (2021). What is new in computer vision and artificial intelligence in medical image analysis applications. Archivo Digital UNAM. http://lapi.fi- p.unam.mx/wp-content/uploads/qims-11-08-3830What-is-new-in-cv-and-ai.pdf DOI: https://doi.org/10.21037/qims-20-1151
MoleScope Homepage, https://www.dermengine.com/es/molescope-ii, last accessed 2024/07/20.
FotoFinder: Detección de cáncer de piel Homepage https://www.fotofinder.de/es/tecnologia/deteccion-del-cancer-de-piel, last accessed 2024/07/20.
ITK-SNAP Homepage, http://www.itksnap.org/pmwiki/pmwiki.php, last accessed 2024/07/06.
Schindelin, J., Arganda-Carreras, I., Frise, E. et al. Fiji: an open-source platform for biological-image analysis. Nat Methods 9, 676–682 (2012). https://doi.org/10.1038/nmeth.2019 DOI: https://doi.org/10.1038/nmeth.2019
3D Slicer image computing platform Homepage, https://www.slicer.org/, last accessed 2024/07/06.
SkinVision Homepage, https://www.skinvision.com, last accessed 2024/07/20.
OsiriX DICOM Homepage, https://www.osirix-viewer.com, last accessed 2024/07/20.
Tschandl, P. et al. The HAM10000 dataset, a large collection of multi-source dermatoscopic images of common pigmented skin lesions. Sci. Data 5:180161 doi: 10.1038/ sdata.2018.161 (2018). DOI: https://doi.org/10.1038/sdata.2018.161
Downloads
Published
How to Cite
Issue
Section
License

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.
AMexIHC make every effort to ensure the accuracy and rigour of all the information (the "Content") contained in out publications. However, AMexIHC and our representatives make no representations or warranties whatsoever as to the accuracy, completeness, or suitability for any purpose of the Content. Any opinions and views expressed in this publication are the opinions and views of the authors, and are not the views of or endorsed by AMexIHC. The accuracy of the Content should not be relied upon and should be independently verified with primary sources of information.