Methods for Motion Detection in Paper Mechanisms for Tangible Augmented Reality Interfaces

Authors

  • Imelda Latapie Instituto Politécnico Nacional
  • Laura Méndez Segundo Instituto Politécnico Nacional
  • David Araujo Díaz Instituto Politécnico Nacional
  • Miriam Pescador-Rojas Instituto Politécnico Nacional

DOI:

https://doi.org/10.47756/aihc.y9i1.157

Keywords:

Tangible Interfaces, Augmented Reality, Paper Mechanisms, Markers, Computer Vision

Abstract

Augmented reality connects the physical world with digital environments, offering users enriched experiences for various applications, including entertainment, education, and marketing. There are proposals for tangible augmented reality interfaces, with paper mechanisms standing out due to their wide range of designs and low construction cost. These mechanisms simulate circular, lever, or linear movements along one or multiple axes, serving as tools for manipulating objects in virtual environments.

This article presents prototypes of tangible interfaces based on paper mechanisms utilizing sliding tabs and incorporating elements such as ArUco markers for detecting displacement along a single axis. The tests were conducted in a controlled environment with specific lighting conditions, progressively varying the distance between the camera and the proposed mechanisms. The results highlight the advantages and disadvantages of the employed techniques, demonstrating that good motion detection accuracy can be maintained. This facilitates the direct manipulation of virtual objects for augmented reality applications.

Downloads

Download data is not yet available.

References

MarketSplash, [En línea]. Available: https://marketsplash.com/estadisticas-de-realidad-aumentada/. [Último acceso: 30 5 2024].

E. Ramírez y Moreno Francisco, Algoritmos de Visión por Computador para un SBC, 2017.

A. Craig y W. Sherman, Understanding Virtual Reality. Interface, application, and design., Elsevier Science, 2003. DOI: https://doi.org/10.1162/105474603322391668

H. Ishii y B. Ullmer, «Tangible Bits: Towards Seamless Interfaces between People, Bits and Atoms,» Conference on Human Factors in Computing Systems-Proceedings, 12 9 1998. DOI: https://doi.org/10.1145/258549.258715

M. Billinghurst, H. Kato y I. Poupyrev, «Tangible augmented reality,» ACM SIGGRAPH ASIA, 2008. DOI: https://doi.org/10.1145/1508044.1508051

V. Becker, S. Kalbermatter, S. Mayer y G. Sörös, «Tailored Controls: Creating Personalized Tangible User Interfaces from Paper,» 2019. DOI: https://doi.org/10.1145/3343055.3359700

C. Zheng, P. Gyory y E. Y.-L. Do, «Tangible Interfaces with Printed Paper Markers,» de 2020 ACM Designing Interactive Systems Conference, Eindhoven, 2020. DOI: https://doi.org/10.1145/3357236.3395578

H.-N. Hsu, Paper-based Tangible User Interface as Interaction in Mixed Reality, 2022.

M. Serrano Sánchez, ¡Pop up! La arquitectura del libro móvil ilustrado infantil, Granada, 2018.

C. del Rosario Ruiz JR, Automated paper Pop-Up design: approximating shape and motion.Tesis doctoral., Singapore: Automated paper Pop-Up design: approximating shape and motion. Tesis doctoral., 2015.

A. Agrawal, «Color Swapping techniques in Image 1Processing.,» 25 5 2021. [En línea]. Available: https://towardsdatascience.com/color-swapping-techniques-in-image-processing-fe594b3ca31a. [Último acceso: 31 5 2024].

ACTUMLOGOS, «Actumlogos, Visión por Computadora,» [En línea]. Available: https://www.actumlogos.com/. [Último acceso: 31 5 2024].

O. Kalachev. “Online ArUco marker sheet generator”. Fodi @ GitHub. Accedido el 1 de julio de 2024. [En línea]. Disponible: https://fodi.github.io/arucosheetgen/

R. Şahin y M. Mercimek, «Fiducial Markers Aided Position Estimation for Vertical Landing ", The European Journal of Research and Development, vol. 3, págs. 29-45, jun. de 2023, Accedido: 18-nov-2023. DOI: https://doi.org/10.56038/ejrnd.v3i2.264

A. González Martín, «Control de asistencia basado en reconocimiento robusto de fiducials: aplicación para sistemas móviles.,» Accedido: 18-nov-2023, Licenciatura, Universidad de La Laguna, Escuela Superior de Ingeniería y Tecnología, jul. de 2015.

M. Košťák, A. Slabý. "Designing a Simple Fiducial Marker for Localization in Spatial Scenes Using Neural Networks," in Sensors, vol. 21, no. 16, 2021. DOI: https://doi.org/10.3390/s21165407

OpenCV. “OpenCV: Detection of ArUco Markers”. OpenCV documentation index. Accedido el 26 de agosto de 2024. [En línea]. Disponible: https://docs.opencv.org/4.x/d5/dae/tutorial_aruco_detection.html

Published

2024-11-30

How to Cite

[1]
Latapie, I. et al. 2024. Methods for Motion Detection in Paper Mechanisms for Tangible Augmented Reality Interfaces. Avances en Interacción Humano-Computadora. 9, 1 (Nov. 2024), 122–125. DOI:https://doi.org/10.47756/aihc.y9i1.157.

Issue

Section

Research Papers

Similar Articles

1 2 3 4 5 6 > >> 

You may also start an advanced similarity search for this article.