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Abstract 
Studies in recognition of human activities have been developed in 

populations of all ages. It is possible to use various technologies to 

obtain data from environmental sensors or equipment, such as 

wheelchairs or wearable devices, for everyday and specialized use. 

With children, using augmented toys has become one of the 

preferred mechanisms to obtain information about the interaction 

between children and the toy. However, few efforts have been made 

to study mechanisms for receiving data from child and adult 

interactions. This work presents the design and evaluation of a 

computationally augmented glove and puzzle piece based on the 

specifications from the literature. After the evaluation, we proposed 

changes to the glove design to ensure the correct interaction data 

was obtained. 
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1 Introduction 
Human activity recognition (HAR) analyzes sensor data to identify 

and characterize human activities [34]. HAR has been used to study 

subject-object interaction. HAR researchers often use wearable and 

mobile technologies to gather data needed for activity recognition 

[12].  

Among different application areas, the use of HAR techniques 

for the identification/recognition of behaviors has become an 

interesting topic due to its potential to impact several research 

contexts, such as surveillance, healthcare, and Human-Computer 

Interaction [2, 16]. It offers a way to use automated mechanisms to 

obtain data under different conditions (e.g., laboratory, naturalistic 

environments) while performing other tasks (e.g., interacting with 

specific objects, doing a particular task, or in free play conditions) 

with minimal intervention by researchers, and with the ability to 

process the collected data faster than when using manual 

observational methods.  

Several works have reported projects involving adults, young 

people [16, 34], and children [4] in the HAR area. For example, in 

the elderly population, there has been work on using HAR 

techniques for fall risk prevention [11, 30] and medication intake 

monitoring [33, 35], whereas for young people, fitness and 

wearable monitoring systems are widely studied [17, 18]. 

Typically, to collect data, researchers use a combination of non-

intrusive sensors hidden in the environment (e.g., video cameras, 

hearing aids), sensors mounted on devices used by people (motion 

and pressure sensors on a wheelchair), sensors embedded in 

everyday devices such as phones and smart watches (inertial 

sensors) and sensors embedded in specialized devices such as heart 

rate bands [38].  

For the children population, there is a growing interest in using 

HAR techniques to identify/recognize activities related to 

behaviors that can negatively affect the children’s wellbeing, 

especially those with disabilities [6, 8, 37, 39, 42]. Among these 

behaviors, the researchers study not only individual children´s 

behaviors but also those that arise during the interaction of children 

and adults, such as children-teacher and parent-child interactions. 

Directive behaviors are one type of behavior exhibited by parents 

during parent-child interaction that could affect their children 

negatively, especially in the presence of a disability [1]. In the case 

of parents of children with disabilities, these behaviors are more 

marked compared to parents of neurotypical children. 

Since most technologies used with adults and young have 

proven only partially suitable for children [31], it has driven the use 

of augmented toys to gather data for activity recognition when only 

children are participating [4]. Using augmented toys implies the 

analysis of data collected from one or several children interacting 

with one or more toys. When designing smart toys to obtain 

children's interaction data, selecting the type, size, and location of 

sensors becomes critical due to the importance of keeping the toy 

aspect and its attractiveness and joy for the child [5, 37]. 

However, when talking about parent-child interaction, the use 

of augmented toys in the detection of behaviors faces new 

challenges since it becomes paramount the study of what 

mechanisms can be used to obtain information from the interaction 

while supporting the children's play experience and the possibility 

that parents can join the activity [22].  

In this context, we are interested in designing mechanisms to 

automatically collect data to identify activities in an environment 

where children and adults participate simultaneously (e.g., to 

recognize directive behaviors) and, to the best of our knowledge, 
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well-established methods or tools for automatically identifying 

activities in parent-child interactions have yet to be developed [10, 

22, 23].  

Considering our interest in mechanisms to collect data from 

parent-child interactions, we present the technical design and 

evaluation of a child’s glove and a puzzle piece based on the 

specifications of [22] and the glove’s prototypes presented in [13, 

24, 29].   

2 Related Work  
Analyzing children's interactions with everyday objects, such as 

toys or home furniture, has been identified as a potential way to 

identify possible disorders [39].  

Several approaches have been implemented for the study of 

children's interactions. One such strategy is capturing and 

analyzing audio and video of children’s daily activities [3, 7, 9]. 

Others tried using wearables to gather data [25, 27, 28], and several 

works aimed at studying the use of augmented toys as an alternative 

to avoid factors that affect previous approaches like video occlusion 

and tolerance to use wearables (especially by children with 

disabilities) [4, 36]. 

As physical manipulatives, augmented toys embody the 

physical interface by themselves [32]. Electronic and 

computational components allow toys to obtain information from 

their environment (e.g., temperature sensors, heart rate, pressure, 

inertial data), perform processing tasks (e.g., embedded 

microcontrollers), and provide feedback to the user (e.g., LED 

spotlights, speakers, vibrohaptic motors). For instance, in the work 

of [42], toys with embedded sensors are used to obtain data that 

identify children's play patterns, which can be early predictors of 

autism. An accelerometer, gyroscope, and a pressure sensor inside 

each toy constitute the primary means of obtaining interaction data. 

In the same way, Autoplay [8] is a toy kit that allows data generated 

during ludic activities to be obtained to anticipate the diagnosis of 

autistic disorders, neurological development, or social fragility. 

Internally, using an accelerometer, a gyroscope, a magnetometer, a 

barometer, a thermometer, and a temperature sensor allows each 

toy to sense the data to identify and characterize the behaviors of 

interest.  

Another example is Guided play [6], a technology that uses 

augmented games and toys to identify repetitive and restrictive 

behaviors during play. The latter represents an early marker of 

autism and thus facilitates an intervention that can reduce these 

behaviors and promote symbolic play. Other researchers have 

focused on using construction block toys with different sensor 

types [15, 40, 41] that enabled indirect data as physiological 

children’s parameters to derive child-object interaction 

information.  

These works are essential evidence of the potential of using 

augmented toys to obtain interaction data in studies where the main 

actors are children, and the parents only support their children 

without direct intervention in the game dynamics. However, when 

a parent is actively playing with her child, the type of game is 

crucial in understanding parent-child interaction, as it must engage 

the child and encourage parent participation.   

In this sense, puzzles are a well-known board game used to 

support problem-solving activities [19, 26, 43] and in prior research 

to investigate different behaviors in parent-child interactions [14, 

20, 21].  

The works of [10, 22, 23] study the use of augmented puzzles 

to gather data from parent-child interaction.  In all studies, 

researchers used wooden puzzle boards to allow parent 

involvement.   

In [22], researchers used the Wizard of Oz technique. To 

simulate an augmented puzzle board using a wooden jigsaw puzzle, 

two pairs of embroidered gloves equipped with simulated sensors, 

and a projector to display a virtual image of the physical puzzle 

before the parent-child dyad. This study reports a positive, playful 

experience with the augmented puzzle and the comfort of gloves. 

Other authors have focused on building augmented glove 

prototypes for applications in other areas.  The different approaches 

used in equipping the gloves offer insights into the materials, 

shapes, and devices that can be used in implementing our prototype. 

In [13], a prototype of a basketball glove is presented, aimed 

at obtaining data for the identification of different movements that 

a player makes with the ball: dribbling, passing, shooting, and 

slapping the ball. A fabric glove equipped with piezoelectric 

sensors placed on the fingertips was proposed, capable of 

identifying the pressures of the hand’s fingers to identify pressure 

patterns for each movement. Considering the type of sensors used, 

the possibility of identifying the pressure exerted by each finger is 

similar to what happens when a child holds a puzzle piece. 

To help patients with Parkinson's Disease (PwPD), in [29] a 

system was developed based on the use of two textile gloves to 

remotely monitor the hand movements of patients with difficulties 

to assist medical centers for periodical evaluation. Various hand 

movements are monitored, such as finger tapping, hand opening, 

and closing. The gloves are integrated with flex sensors on the 

fingers and one inertial measurement unit and have an onboard 

microcontroller connected wirelessly to a tablet computer.  The 

system was assessed with four PwPDs, hand movement-related 

data was collected, and the system was able to identify differences 

in pre-medication and post-medication test.  This is an example of 

the potential of flex and IMU sensors to identify finger and hand 

movements, which are essential if you want to detect when the 

glove is holding a piece and/or when the glove is moving. 

Finally, in [24] researchers designed and built a glove 

prototype intended to recognize objects when performing basic 

daily activities.  Unlike other approaches, the gloves have force, 

flex, and IMU sensors. This allows the use of pressure and flexion 

angle to identify the object's shape, and the IMU to determine if the 

object is static or in movement.  

3 Implementing HAR technology for parent-

child interactions 
The work of [22] proposed using an augmented puzzle to obtain 

data on the interaction of a parent and her child with disabilities. 

The authors present a strategy for associating game activities with 

smaller steps that can be determined using data collected by the 

sensors embedded in the puzzle’s pieces and into the participant’s 

gloves.  

For example, the activity “The Parent removes a piece from 

the puzzle board previously placed by the child” is divided into the 

following steps: (a) The parent takes the piece from the board and 

(b) The parent places the piece outside the puzzle board.  

Following Figure 1, we chose a one-size-fits-all embroidered 

glove to fit children’s hand sizes. The glove included custom-built 

pressure sensors based on the design of [44] and [13]. These 

pressure sensors were in the thumb, index, and middle fingers to 

detect when anyone touches an object’s surface (Figure 1A). The 

same fingers had one spectra flex sensor to detect finger bending 

(Figure 1B). All components in the glove were connected using an 

electrically conductive thread.     

On the other hand, the puzzle piece was built from PLA 

material using a 3D Creality printer. It is based on a rectangular 
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prism form factor, 65mm(W) x 65mm(D) x 25mm(H). We wrapped 

the piece in a copper-based electrical tape that works as a touch 

sensor to detect when somebody holds the piece (Figure 1C).  

Finally, we equipped the puzzle piece and glove with an ESP-

32 microcontroller and the IMU MPU650 capable of logging 

accelerometer + gyroscope data, i.e., motion data (Figure 1D). The 

ESP32 processor's technical specifications limited the number of 

sensors in each glove.   

The final version of each glove weighed around 70 grams, 

costing approximately US$95, while the cost of each puzzle piece 

was around US$13. 

4 Formative Evaluation of the HAR 

Technology  
Considering the concerns informed in  [24] about the implications 

of the hand size in the performance of their one-size fits all gloves, 

we conducted a user study with 15 children to obtain feedback on 

the design of the HAR technology. The study consisted of putting 

on one glove in the dominant hand of the participant who must 

make three different movements using a piece model (i.e., taking 

the piece from outside a four-position board and putting it into one 

specific position into the board) in which we observed how the 

participant manipulated the piece. 

4.1 Methods 
The experiment was conducted in a private facility with conditions 

suitable for the study.  

4.1.1 Participants 
We recruited 15 children (eight female) and one more child for pilot 

testing (see Table 1). All children were neurotypical individuals 

aged 7-13 (Mean age: 9.73; SD=2.016). All mothers signed consent 

forms on behalf of the underage children. Mothers were absent 

during the study to avoid children relying on them. 

4.1.2 Task Description 
Limited by the experimental nature of the glove and the piece where 

a full puzzle is missing, we studied videos from previous works[22, 

23] to identify common piece movements when children play with 

a puzzle board.  From the set of movements, we considered only 

three of them to avoid a long session time. 

The participants performed three tasks, simulating a player 

moving one puzzle piece from one position to another. A board was 

drawn on a 42x59 cm white sheet paper (see Figure 2), divided into 

four sections numbered consecutively from one to four, starting at 

the top left section. We next describe each task: 

• Task 1 (T1): The participant must pick up a piece outside the 

board and place it on position 1. Then, the participant must 

pick it up again and place it outside the board to its original 

position.  

• Task 2 (T2): Move the piece from position 1 to position 2, 

picking it up again and bringing it to position 1 horizontally.  

• Task 3 (T3): Move the piece from position 1 to position 3, 

returning it to position 1, simulating a vertical movement.  

 

  

Figure 1. Prototypes of the child's glove and the piece. Dotted 

lines indicate the location of sensors. 

 

Figure 2. Experimental setting: the board, the piece, and the 

child wearing the glove. 

We asked participants to execute each task ten times (i.e., 30 

executions) during each session. The activity finished when the 

participant completed the three tasks. We did not randomize the 

task order, considering that all tasks shared similar complexity. 

Participants received instructions from the research team during the 

individual sessions. 

 

Table 1. Participants’ Demographic 

Participant Gender Age Palm size (cm) Hand large (cm) Wore gloves before Dominant hand 

 P1 F  12 18.5 17.5 No Right 

 P2 M  7 16.5 16.0 No Right 

 P3 M  8 16.5 15.0 No Right 

 P4 F  9 16.5 15.5 No Right 
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 P5 F  10 17.0 16.7 No Right 

 P6 F  13 19.0 18.5 No Right 

 P7 M  9 16.0 14.5 No Right 

 P8 M  8 15.0 14.5 No Right 

 P9 M  12 19.5 17.5 No Left 

 P10 M  12 18.5 16.5 No Right 

 P11 F  7 15.0 14.5 No Right 

 P12 F  8 16.0 15.0 No Right 

 P13 M  10 17.7 15.5 No Right 

 P14 F  9 15.5 14.0 No Right 

 P15 F  12 16.8 16.5 No Right 

 Avg. 

Sd 

 9.73 

 2.02 

16.93 

1.42 

15.85 

1.33 

  

4.2 Research Procedure 
We carried out the study over three days. The sessions were 

developed in the same venue. We used two video cameras and one 

sound recorder during all sessions. 

Each child performed the tasks individually, wearing the glove 

during the session. The average effective time spent by each child 

solving the three tasks was 03:10 min (Max=4:01 min; Min=2:22 

min; SD 0:27 min). Time spent on instructions at the start and 

between each task is not considered. 

Each session was as follows: 

• The session started with initial instructions on the 

calibration task. The participant performed a calibration 

task to gather the sensor values when she held the piece and 

when her hand was empty and fully extended. These data 

constitute reference values to identify a bent finger or a 

finger touching an object. 

• Then, before each task, the participant received verbal 

instructions on how to perform it. Using the piece, the 

researcher carefully explained: (a) where to pick up the 

piece, (b) how to bring it to the corresponding position and 

release it, (c) when to make a pause, and (d) how to pick up 

the piece and bring it to its initial position, emphasizing the 

need to pause before attempting the task again.    

• At the end, each participant was thanked for their 

participation. 

Two members of the research team and the participant were 

present during each session: one leading the sessions and one in 

charge of the system's performance, including the development of 

the calibration task and the video recording of each session. 

We developed a pilot testing session with one participant. 

Some adjustments were made to the instructions guide, the 

calibration task, and the glove design. For instance, we solved 

short-circuit troubles in the glove by insulating conductive threads 

that communicate the flex sensors with the CPU onboard. Video 

cameras and the sound recorder were not relocated. The final 

physical arrangement of the experiment can be seen in Figure 3. 

 

Figure 3.The final physical setting of the experiment. 

4.3 Collected Data 
Two researchers coded each session video separately (three videos 

for each session, one for each task, total video length=86:03 min; 

total audio length=87:03 min).   

We coded three events for each finger when the participant was 

holding the piece: (a) the finger is bent, (b) the finger is touching 

any part of the piece, and (c) the finger is touching the touch sensors 

in the piece. The occurrence of every event was classified as Rarely 

(Coded as 1) if the event seldom happened; Sometimes (Coded as 

2) if the event happens about half of the times the child holds the 

piece; and Frequently (Coded as 3) if the number of times the event 

occurs is close to the number of times the participant holds the 

piece. 

The coding process worked as follows: First, the two coders 

worked on the videos separately. When they finished video coding, 

both coders compared and analyzed the data to identify differences. 

They then discussed all the differences, agreeing on the final data 

and codes. 

4.4 Data Analysis 
For data analysis, we use descriptive and inferential statistics. We 

investigated the behavior of each finger when the children held the 

piece (finger bent, finger touching the piece, and finger touching 

the sensors of the piece) regardless of the task. We used frequency 

as the primary indicator. We used an ANOVA and a post-hoc 

Tukey’s HSD to validate the media differences in fingers’ data. 
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5 Results 
Table 2 shows the data coded from the videos of the three tasks 

performed by all participants. The data represents the average 

values of fingers’ actions based on the scale defined by the coders. 

Values below 2 indicate that participants rarely used their 

fingers to make the action, and values over 2 indicate that 

participants commonly used their fingers to make the action. 

To ease data interpretation, each finger was assigned a number, 

as shown in Figure 1: thumb (F1), index (F2), middle (F3), ring 

(F4), and pinky (F5). 

Table 2. Media of Data Coded by Task.  

  T1 T2 T3 

Action Finger Avg. SD Avg. SD Avg. SD 

Finger 

in touch 

with the 

sensors 

in the 

piece 

F1 3.00 0.00 3.00 0.00 3.00 0.00 

F2 1.00 0.00 1.13 0.52 1.00 0.00 

F3 2.87 0.52 2.87 0.52 3.00 0.00 

F4 2.40 0.91 2.53 0.83 2.47 0.83 

F5 1.40 0.83 1.40 0.83 1.13 0.52 

Finger 

in touch 

with the 

piece 

F1 3.00 0.00 3.00 0.00 3.00 0.00 

F2 2.80 0.41 2.93 0.26 2.93 0.26 

F3 3.00 0.00 2.87 0.52 3.00 0.00 

F4 2.40 0.91 2.40 0.91 2.47 0.83 

F5 1.40 0.83 1.40 0.83 1.13 0.52 

Finger’s 

Flexion 

F1 1.00 0.00 1.00 0.00 1.00 0.00 

F2 1.40 0.63 1.53 0.64 1.33 0.49 

F3 2.80 0.41 2.80 0.41 2.80 0.41 

F4 2.87 0.35 2.73 0.59 2.67 0.62 

F5 1.40 0.83 1.53 0.92 1.40 0.83 

Coding Scale: Rarely=1; Sometimes=2; Frequently=3. 

 

We used an ANOVA for each action, grouped by finger across 

all tasks. Significant differences were reported. In Figure 4, we 

present visually the significant differences between conditions 

reported by a post-hoc Tukey’s HSD.  

 

 

Figure 4. Tukey’s HSD significant differences between groups 

across all tasks. Numbers above each finger represent the 

finger mean score across tasks T1, T2, and T3. 

5.1 Fingers’ flexion 
Data for fingers F1, F2, and F5 show that children rarely bent their 

index, thumb, and pinky fingers (mean < 1.884) across all 

conditions. In contrast, children frequently bent the 3 and 4 fingers 

when holding the piece. 

The ANOVA shows a significant difference between the three 

conditions: T1(F=41.469, df=74, p < 0.001), T2(F=27.323, df=74, 

p<0.001), and T3(F=35.058, df=74, p<0.001). 

A post-hoc Tukey’s HSD shows that fingers F1, F2, and F5 

have no significant differences across all conditions, and fingers F3 

and F4 show no significant differences. However, fingers F1, F2, 

and F5 are all significantly different (p<0.001) from F3 and F4 

across all conditions.  

5.2 Finger in touch with the sensors on the 

piece 
Data for fingers F2 and F5 reflects that they barely were in contact 

with the touch sensors that wrap the piece for all children across all 

tasks (mean < 2.146), while data for fingers F1, F3, and F4 shows 

that children commonly touched the sensors in the piece. 

The ANOVA shows a significant difference between the three 

conditions: T1(F=33.503, df=74, p < 0.001), T2(F=29.114, df=74, 

p<0.001), and T3(F=75.960, df=74, p<0.001). 

A post-hoc Tukey’s HSD shows that fingers F2 and F5 have 

no significant differences across all tasks. No significant 

differences were found for fingers F1, F3, and F4 for T1 and T2. 

However, in T3, significant differences (p<0.05) between fingers 

F1 and F4 and fingers F3 and F4 were found. 

5.3 Finger in touch with the piece 
Data for fingers F1, F2, F3, and F4 shows that all participants touch 

the piece with these fingers almost all the time when holding the 

piece (mean > 2.516), while finger F5 is barely used. 

The ANOVA shows a significant difference between the three 

conditions: T1(F=20.110, df=74, p < 0.001), T2(F=18.168, df=74, 

p<0.001), and T3(F=46.602, df=74, p<0.001). 

A post-hoc Tukey’s HSD shows a significant difference 

(p<0.001) between finger F5 and each of the fingers (i.e., F1, F2, 

F3, F4) across all conditions. There is a significant difference 

between finger F4 and fingers F1 and F3 for T1 and between finger 

F4 and fingers F2 and F3 for T3. 

6 Discussion 
The flex sensors in the thumb (F1) and index (F2) fingers do not 

fulfill their function. Most children never bent their thumb and 

index fingers to grab the piece. In almost all tasks, they left them 

stretched out at the top of the piece, so the flex data for these two 

fingers is always close to zero. The middle (F3) finger was the only 

finger equipped with a flex sensor that behaved as expected. 

Practically all children bent this finger when holding the piece.   

Children frequently used the ring (F4) finger to hold the piece. 

However, we did not collect essential data because this finger does 

not have a flex sensor. 

Although most children did not bend their F1 and F2 fingers, 

all three fingers with flex sensors had physical contact with the 

piece's surface, so the pressure sensors in the fingers collected data 

as expected. 

However, our initial design considered that when a child held 

a piece, all the pressure sensors in the glove would be in contact 

with the touch sensors in the piece.  

The thumb practically touched the pressure sensor all the time 

while the children were holding the piece in their hands despite 

whether it was bent or not, maybe due to its morphology; the middle 

finger behaved as expected in the three tasks because the children 

bent this finger almost all times they held the piece. This was 

different for the index, which practically never touched the pressure 
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sensors surrounding the piece because most of our participants left 

it stretched out at the top. 

This behavior is supported by the researchers’ observations, 

who reported that the children unexpectedly held the piece, using 

their thumb, middle, and ring fingers instead of their thumb, index, 

and middle. Figure 5 shows a child holding a piece. 

The results indicate that the sensors' location on most of the 

glove's fingers needs to be improved to collect parent-child 

interaction data automatically.  

The touch sensors are located adequately in the piece if we 

consider the possibility of changing the sensors in the glove to the 

fingers that intervene when the children grab the piece. 

 

 

Figure 5. A participant is holding a piece in an unexpected 

way. 

6.1 Revisiting the Glove Design 
The results of our formative evaluation imply that flexion data 

gathered automatically for the thumb and index fingers does not 

help identify whether the child is holding the piece. Also, the lack 

of sensors on the ring finger caused a critical loss of data that was 

useful in describing whether the child was holding the piece. 

Consequently, we redesigned the glove. The main changes 

were the relocation of sensors in the thumb (F1), index (F2), and 

ring (F4) fingers. 

Flex sensors were removed from the thumb (F1) and index 

(F2) fingers because the children maintained them straight when 

holding a piece. The touch sensor was kept in place. Sensors in the 

middle finger were not relocated, and flex and pressure sensors 

were installed in the ring sensor.  

The final glove configuration was set as thumb (pressure), 

index (pressure), middle (flex, pressure), and ring (flex, pressure).  

The redesigned glove is shown in Figure 6.  

 

 

Figure 6. Gloves with flex and touch sensors relocated. 

The piece design did not undergo any amendment. As most of 

our participants held the piece the same way, we expect that the 

relocation of sensors in the glove is sufficient to gather valuable 

data to achieve our goals. However, future work must be done to 

test the glove's functionality.  

This work could benefit from a larger sample size. Also, using 

a different type of glove is desirable. Another limitation is the 

piece's form factor, which was kept unchanged.  

7 Conclusion 
In this work, we present the results of a formative evaluation of 

HAR technology for parent-child interactions. We provide details 

of the construction of an augmented glove and puzzle piece, which 

are part of an augmented puzzle aimed at the collecting of parent-

child interaction data, based on the requirements informed in [22] 

and the prototypes specifications described in [13, 24, 29]. 

After the evaluation, using video coding, we detected a 

problem related to the location of sensors in some fingers of the 

child’s glove, which prevented the system from obtaining data that 

could be used for activity recognition. The problem resulted from 

an unexpected way the child held the piece. This resulted in the 

redesign of the glove and the relocation of some of the sensors. 

The results of this study are significant because they suggest 

that differences in how children and adults manipulate objects may 

affect the form and functionality of wearables, such as gloves, 

which should be considered in the design stage.  In this way, this 

work also contributes to the development of mechanism aimed at 

the gathering of interaction data in parent-child interaction,   
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